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Introduction

Designations

∀n ∈ N : n̄ = {1, . . . , n}
∀X : 2X◦ = {A ∈ 2X | A is finite}
∀X : 2X∞ = {A ∈ 2X | A is infinite}
for any semigroup (S , ◦) and each a, s, t ∈ S
rW t,a

s = {n ∈ N | s ◦ tn = a}
for any semigroup (S , ◦) and each a, s, t ∈ S
lW t,a

s = {n ∈ N | tn ◦ s = a}
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Introduction

Designations

βX = {∅ 6= F ⊂ 2X | F is ultrafilter} ⊂ 22X

βX id
◦ = {F ∈ βX | F ◦ F = F} ⊂ 22X for any semigroup

(X , ◦)
βgX = {∅ 6= F ⊂ 2X | F is principal ultrafilter} ⊂ 22X

βwX = {∅ 6= F ⊂ 2X | F is free ultrafilter} ⊂ 22X

? : 2X → 2βX ; A 7→ A? = {F ∈ βX | A ∈ F} ⊂ βX

e : X → 22X ; a 7→ e(a) = {A ∈ 2X | a ∈ A} ⊂ 2X
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Introduction to Hindman theorem

We would like to discuss the proof of Hindman theorem that states
as follows.

Theorem

For any division of N into finite number of trays we always find
such tray that there is an infinite A ⊂ N that is in this tray and all
finite sums of elements of the set A belongs to this tray.

There is written a lot of proofs for this theorem but we are going
to concentrate on the proof that uses the Cech Stone
compactification of N. In fact this is the shortest proof.
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Movability and the Hindman theorem

It turns that the same construction as in Cech Stone
compactification of N works for general infinite semigroups (S , ◦).
These semigroups have an additional property called movability.
There is proven that for an infinite rightmoving semigroup the
Hindman theorem holds since this is equivalent to the fact that the
Cech Stone remainder βS − S is subsemigroup of βS . But what is
happen if this semigroup if leftmoving?
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Moving semigroups

Definition

The infinite semigroup (S , ◦) is rightmoving⇔ ∀F ∈ 2S◦ : ∀A ∈
2S∞ : ∃B ∈ 2A◦ : {s ∈ S | B ◦ s ⊂ F} ∈ 2S◦

Definition

The infinite semigroup (S , ◦) is leftmoving⇔ ∀F ∈ 2S◦ : ∀A ∈
2S∞ : ∃B ∈ 2A◦ : {s ∈ S | s ◦ B ⊂ F} ∈ 2S◦

There are The Eight Immortal Theorems about moving semigroups
that we are introducing here.
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What semigroups are not moving

Theorem

For each infinite semigroup (S , ◦) and for each such t, a ∈ S that
∀m, n ∈ N : m 6= n⇒ tn 6= tm and t 6= a holds :

if ∀s ∈ S − {t} : rW t,a
s ∈ 2N∞ and (rW t,a

s )s∈S−{t} has finite
infinite intersection property then (S , ◦) is not rightmoving.

if ∀s ∈ S − {t} : lW t,a
s ∈ 2N∞ and (lW t,a

s )s∈S−{t} has finite
infinite intersection property then (S , ◦) is not leftmoving.

Jump to proof

Artur Gizycki The Hindman theorem for semigroups



What semigroups are rightmoving and leftmoving?

Theorem

Every infinite semigroup (S , ◦) such that ∀a ∈ S : La is finite
to one is rightmoving.

Every infinite semigroup (S , ◦) such that ∀a ∈ S : Ra is finite
to one is leftmoving.

Every infinite leftcancellative semigroup (S , ◦) is rightmoving.

Every infinite rightcancellative semigroup (S , ◦) is leftmoving.

Every infinite rightcancellative semigroup (S , ◦) is
rightmoving.

Every infinite leftcancellative semigroup (S , ◦) is leftmoving.

Jump to proof
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What is Cech Stone compactification

Definition

For every topological Hausdorff space (X , τ) the compactification
is the pair (φ,C )⇔ C is compact∧φ : X → C is
homeomorphism∧φ(X ) is dense in C .

Among all compactifications the Cech Stone compactification is
the richest and has the highest power.

Definition

For every topological regular space (X , τX ) and its
compactification (φ,Z ) the compactification (φ,Z ) is Cech
Stone⇔ ∀(Y , τY ) compact topological
space : ∀f ∈ C (X ,Y ) : ∃g ∈ C (Z ⊃ φ(X ),Y ) : g ◦ φ = f .
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The Cech Stone compactification is unique

Theorem

For every topological space (X , τ) and every two different Cech
Stone compactification of this space (φ,W ) and (ψ,V ) there is
such g ∈ C (V ⊃ ψ(X ), φ(X ) ⊂W ) that g ◦ ψ = φ.

Therefore every Cech Stone compactification of the same space
(X , τ) can be brought to one and for countable space X we can
deal only with Cech Stone compactification that is made with
ultrafilters. Now assume that we know without proofs that (e, βN)
is the Cech Stone compactification of N. Jump to proof
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The semigroup structure

βN becomes a continuous semigroup under the special addition.

Definition

+: βN2 → 22N ; (F ,G ) 7→ F + G = {A ⊂ N | {n ∈ N | A− n ∈
G} ∈ F}.

Theorem

+: βgN2 → βgN; (F ,G ) 7→ F + G = {A ⊂ N | {n ∈ N |
A− n ∈ G} ∈ F}
∀F ,G ∈ βN : F + G ∈ βN

∀F ,G ,H ∈ βN : (F + G ) + H = F + (G + H)

∀G ∈ βN : +G : βN → βN; F 7→ +G (F ) = F + G is
continuous function.

Jump to proof
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Idempotent ultrafilters

The focal point of the Cech Stone compactification of any discrete
space X which is used in the proof of Hindman theorem is
idempotence. The following equalities from ultrafilters permit the
use of G−pair in proof of Hindmann theorem.

Theorem

βid(N) 6= ∅
βid(N) ∩ βg (N) = ∅
∀F ∈ βidN : ∀A ∈ 2N : A ∈ F ⇔ Â ∈ F

∀F ∈ βidN : ∀A ∈ F : A ∩ Â ∈ F

∀F ∈ βidN : ∀A ∈ F : A ∩ Â 6= ∅
∀F ∈ βidN : ∀A ∈ F : ∃a ∈ X : A ∩ (A− a) ∈ F

∀F ∈ βidN : ∀A ∈ F : ∃a ∈ X : A ∩ (A− a)− {a} ∈ F

Jump to proof
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G−pair

Now we define the special tool for proving Hindmann theorem.

Definition

For every F ∈ βidN and every A ∈ F the pair of sequences
(Kn) : N0 → F ; n 7→ Kn and (an) : N0 → N; n 7→ an is G−pair
starting from A if and only if

Kn =

{
A⇔ n = 0

Kn−1 ∩ (Kn−1 − an)− {an} ⇔ n ∈ N

an =

{
1⇔ n = 0

min(Kn−1 ∩ ˆKn−1)⇔ n ∈ N
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Property of G−pair

Here we express a certain property that solves Hindman theorem.
To prove the Hindman theorem we need only the starting set.

Theorem

For every F ∈ βidN and every A ∈ F the G−pair (Kn, an)
starting from A fulfills ∀n ∈ N : Kn ⊂ Kn−1 ∧ an + Kn ⊂ Kn−1.

Jump to proof
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Hindman theorem

Here we recall the Hindmann theorem.

Theorem

For any division of N into finite number of trays we always find
such tray that there is an infinite A ⊂ N that is in this tray and all
finite sums of elements of the set A belongs to this tray.

It is enough to indicate the starting set for G−pair. Let A will be
one of trays.
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Proof of Hindman theorem

Proof.

Recall that βidN 6= ∅. Therefore there is such F ∈ βN that
F = F + F . Now we name the starting set for G−pair. Now divide
the set N on a finite number n ∈ N of trays. In this way we get a
finite collection of disjoint sets (A1, . . . ,An). These sets are the
division of set N. Because there is F 3 N =

⋃
i∈n̄ Ai and F is a

prime filter so there is only one such i ∈ n̄ that Ai ∈ F . Let
(Kn, an) is G−pair starting from Ai ∈ F . For example check that
a11 + a5 + a3 is in the same tray as
a11, a5, a3, a11 + a5, a3 + a11, a5 + a3. Notice that a11 ∈ K10 ⊂ K4 i
a5 ∈ K4 and therefore a11 + a5 ∈ K4 ⊂ K2 because a5 + K5 ∈ K4

and a3 ∈ K2 and therefore a11 + a5 + a3 ∈ K2 ⊂ K0 that means
a11 + a5 + a3 are in one tray. Our infinite set from the theorem of
Hindmann is {an | n ∈ N}.
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The statement of mixing hypothesis

The mixing hypothesis asks whether it can be so that the following
theorem holds.

Theorem

For any division of N into finite number of trays we always find
such tray that there is an infinite A ⊂ N that is in this tray and all
finite sums of elements of the set A belongs to this tray and
moreover all finite multiplications of elements of the set A belongs
to this tray.
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Mixing hypothesis

In the paper ’Ultrafilters with applications to analysis, social choice
and combinatorics’ of Galvin is written that the following problem
is not solved to this day.

Problem

For every n ∈ N if we divide the set N on n numbered trays from
the set n̄ then there is such number k ∈ n̄ and such numbers
x , y ∈ N that x , y , x + y , x · y are in tray number k.

This is because it was shown in the paper ’Sums equal to products
in βN’ of Hindmann that ∀F ∈ βN : F + F 6= F ·F .
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Mixing hypothesis

Remark

Notice that ∀F ∈ βN : F + F 6= F ·F ⇒ βid+ N ∩ βid· N = ∅. To see
this assume that
∃F ∈ βN : F ∈ βid+ N ∩ βid· N ⇔ ∃F ∈ βN : F + F = F ∧ F = F ·F .
Therefore ∃F ∈ βN : F + F = F ·F .
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Mixing hypothesis

We are going to solve mixing hypothesis with false assumption that
there is such F ∈ βN that F ∈ βid+ N ∩ βid· N. The procedure is
very similar to the already shown addition in βN. As in the case of
A− x = {y ∈ X | x + y ∈ A} i Â+ = {n ∈ N | A− n ∈ F} we
define A· 1

x = {y ∈ X | y · x ∈ A} and Â· = {n ∈ N | A· 1
n ∈ F}. As

in the case of
+: βN2 → βN; (F ,G ) 7→ F + G = {A ⊂ N | Â+ ∈ G} ∈ F} is
well defined and fulfills all theorems of the above we show that
· : βN2 → βN; (F ,G ) 7→ F ·G = {A ⊂ N | Â· ∈ G} ∈ F} is well
defined and fulfills all mentioned above theorems with small
change + to ·.
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Mixing hypothesis

Now we assume that there is such F ∈ βN that
F ∈ δN : = βid+ N ∩ βid· N. Notice that for every F ∈ δN holds

∀A ⊂ X : A ∈ F = F + F ⇔ Â+ ∈ F ∧ A ∈ F = F ·F ⇔ Â· ∈ F .
Therefore for every A ∈ F holds Â+ ∈ F together with Â· ∈ F .
Therefore A ∩ Â· ∩ Â+ ∈ F and therefore A ∩ Â· ∩ Â+ 6= ∅.
Therefore there is such a ∈ X that
a ∈ A ∧ A− a ∈ F ∧ A· 1

a ∈ F ∧ A ∈ F . Therefore there is such
a ∈ X that (A− a) ∩ (A· 1

a ) ∩ A ∈ F and
(A− a) ∩ (A· 1

a ) ∩ A− {a} ∈ F .
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Mixing hypothesis

We define G−pair that starts from A as in the case of addition.

Definition

Kn =

{
A⇔ n = 0

Kn−1 ∩ (Kn−1 − an) ∩ (Kn−1· 1
an

)− {an} ⇔ n ∈ N

an =

{
1⇔ n = 0

min(Kn−1 ∩ ˆKn−1
+ ∩ ˆKn−1

·
)⇔ n ∈ N

.
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Mixing hypothesis

As in the case of addition we prove that the following theorem
holds.

Theorem

For every F ∈ δN and every A ∈ F the G−pair (Kn, an) starting
from A fulfills
∀n ∈ N : Kn ⊂ Kn−1 ∧ an + Kn ⊂ Kn−1 ∧ an·Kn ⊂ Kn−1.

In this way we have an approach to solve mixing hypothesis.
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Proof of mixing hypothesis

Proof.

We name the starting set for G−pair. Now divide the set N on a
finite number n ∈ N of trays. In this way we get a finite collection
of disjoint sets (A1, . . . ,An). These sets are the division of set N.
Because there is F 3 N =

⋃
i∈n̄ Ai and F is a prime filter so there

is only one such i ∈ n̄ that Ai ∈ F . Let (Kn, an) is G−pair starting
from K0 = Ai ∈ F . Notice that a11 ∈ K10 ⊂ K4 i a5 ∈ K4 and
because a5 + K5 ⊂ K4 we get that a5 + a11 ∈ K4 ⊂ K0 = Ai and
because a5·K5 ⊂ K4 we get that a5· a11 ∈ K4 ⊂ K0 = Ai .
Therefore there is such tray Ai that
a11, a5, a11 + a5, a11· a5 ∈ Ai .

Artur Gizycki The Hindman theorem for semigroups



Mixing hypothesis

This fact ∀F ∈ βN : F + F 6= F ·F is due to complexity of additive
and multiplicative structure of N. But there are a lot of operations
in natural numbers. It might be able to fins such operation (N, ◦)
that is associative, cancellable and βid+ N ∩ βid◦ N 6= ∅. Then we
show that a, b, a + b, a ◦ b are in one tray. Hence we should look
for these two operations (N, ◦1) and (N, ◦2) such that N is
semigroup and βid◦1

(N) ∩ βid◦2
(N) 6= ∅. Those operations must be

such that Hindmann theorem holds for the semigroups (N, ◦1) and
(N, ◦2). Therefore both ◦1 and ◦2 must be rightmoving.
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Rightmoving semigroups

The problem of Hindmann theorem is solved for semigroups (S , ◦)
that are rightmoving.

Theorem

For any rightmoving semigroup (S , ◦) the Hindmann theorem with
operation ◦ holds.

We dont know what is happen if the semigroup (S , ◦) is
leftmoving. There are semigroups that are leftmoving but not
rightmoving and for rightmoving semigroups we have the following
equivalence.

Theorem

For every semigroup (S , ◦) we get that (S , ◦) is rightmoving⇔ the
Cech Stone remainder βS − S is a subsemigroup of βS.
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Proof for rightmoving semigroups

Proof.

Choose F = {a} ∈ 2S◦ and A = S − {t} ∈ 2S∞. Then taking any
s ∈ A we get that rW t,a

s = {n ∈ N | s ◦ tn = a} ∈ 2N∞ and
therefore 2S∞ 3 {tn | n ∈ rW t,a

s } = {tn ∈ S | s ◦ tn = a} ⊂ {u ∈
S | s ◦ u = a} ∈ 2S and therefore {u ∈ S | s ◦ u = a} ∈ 2S∞. Now
we show that for any finite B ⊂ A holds {u ∈ S | B ◦ u ⊂ F} ∈ 2S∞
that contradicts rightmovability. Taking any n ∈ N and any
s1, . . . , sn ∈ A that are different and denoting B = {s1, . . . , sn} we
get that ∀i ∈ n̄ : rW t,a

si ∈ 2N∞. From the above argument we get
that
∀i ∈ n̄ : 2S∞ 3 {tn | n ∈ rW t,a

si } ⊂ {u ∈ S | si ◦ u = a} ⊂ S .

Jump to proof
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The rest of the proof for rightmoving semigroups

Proof.

Now we intersect over i ∈ n̄ these sets {tn | n ∈
⋂

i∈n̄ rW t,a
si } =⋂

i∈n̄{tn | n ∈ rW t,a
si } ⊂

⋂
i∈n̄{u ∈ S | si ◦ u = a} = {u ∈ S | ∀i ∈

n̄ : si ◦ u = a} = {u ∈ S | s1 ◦ u = a ∧ . . . ∧ sn ◦ u = a} = {u ∈ S |
{s1, . . . , sn} ◦ u = a} = {s ∈ S | B ◦ s ⊂ F} ⊂ S . Just assuming
that

⋂
i∈n̄{tn | n ∈ rW t,a

si } ∈ 2S∞ we conclude that
{s ∈ S | B ◦ s ⊂ F} ∈ 2S∞. The assumption that the
(rW t,a

s )s∈S−{t} has finite infinite intersection property is
sufficient.

Jump to proof
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Proof for leftmoving semigroups

Proof.

Choose F = {a} ∈ 2S◦ and A = S − {t} ∈ 2S∞. Then taking any
s ∈ A we get that lW t,a

s = {n ∈ N | tn ◦ s = a} ∈ 2N∞ and
therefore 2S∞ 3 {tn | n ∈ lW t,a

s } = {tn ∈ S | tn ◦ s = a} ⊂ {u ∈
S | u ◦ s = a} ∈ 2S and therefore {u ∈ S | u ◦ s = a} ∈ 2S∞. Now
we show that for any finite B ⊂ A holds {u ∈ S | u ◦B ⊂ F} ∈ 2S∞
that contradicts leftmovability. Taking any n ∈ N and any
s1, . . . , sn ∈ A that are different and denoting B = {s1, . . . , sn} we
get that ∀i ∈ n̄ : lW t,a

si ∈ 2N∞. From the above argument we get
that ∀i ∈ n̄ : 2S∞ 3 {tn | n ∈ lW t,a

si } ⊂ {u ∈ S | u ◦ si = a} ⊂ S .

Jump to proof
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The rest of the proof for leftmoving semigroups

Proof.

Now we intersect over i ∈ n̄ these sets {tn | n ∈
⋂

i∈n̄ lW t,a
si } =⋂

i∈n̄{tn | n ∈ lW t,a
si } ⊂

⋂
i∈n̄{u ∈ S | u ◦ si = a} = {u ∈ S | ∀i ∈

n̄ : u ◦ si = a} = {u ∈ S | u ◦ s1 = a ∧ . . . ∧ u ◦ sn = a} = {u ∈ S |
u ◦ {s1, . . . , sn} = a} = {s ∈ S | s ◦ B ⊂ F} ⊂ S . Just assuming
that

⋂
i∈n̄{tn | n ∈ lW t,a

si } ∈ 2S∞ we conclude that
{s ∈ S | s ◦ B ⊂ F} ∈ 2S∞. The assumption that the
(lW t,a

s )s∈S−{t} has finite infinite intersection property is sufficient.

Jump to theorem
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Proof of rightmovability if La is finite to one

Proof.

The sentence ∀a ∈ S : La is finite to one means that
∀a, t ∈ S : L−1

a ({t}) = {s ∈ S | La(s) = a ◦ s = t} is finite. Now
assume that (S , ◦) is not rightmoving. This means that there are
the finite set F = {f1, . . . , fm} ⊂ S and the infinite set A ⊂ S such
that for every finite B = {b1, . . . , bn} ⊂ A the set
S ⊃ {s ∈ S | B ◦ s ⊂ F} is infinite. Notice that for this finite B
the following equality {s ∈ S | B ◦ s ⊂ F} = {s ∈ S | ∀i ∈
n̄ : bi ◦ s ∈ F} =

⋂
i∈n̄{s ∈ S | bi ◦ s ∈ F} =

⋂
i∈n̄{s ∈ S | ∃j ∈

m̄ : bi ◦ s = fj} =
⋂

i∈n̄
⋃

j∈m̄{s ∈ S | bi ◦ s = fj} holds. Now
notice that ∀a ∈ S : La is finite to one and therefore
∀i ∈ n̄ : ∀j ∈ m̄ : {s ∈ S : bi ◦ s = fj} is finite and sums and
intersections of finite set is finite. Therefore {s ∈ S | B ◦ s ⊂ F} is
finite, contradiction.

Jump to proof
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Proof that leftcancellative semigroup is rightmoving

Proof.

The semigroup (S , ◦) jest leftcancellative⇔ ∀a, b, s ∈ S : a 6= b ⇒
Ls(a) = s ◦ a 6= s ◦ b = Ls(b)⇔ ∀s ∈ S : Ls is injection. Therefore
for every s ∈ S preimage of singleton L−1

s ({t}) is at most singleton
and therefore ∀a ∈ S : La is finite to one and therefore (S , ◦) is
rightmoving.

Jump to proof
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Proof of leftmovability if Ra is finite to one

Proof.

The sentence ∀a ∈ S : Ra is finite to one means that
∀a, t ∈ S : R−1

a ({t}) = {s ∈ S | Ra(s) = s ◦ a = t} is finite. Now
assume that (S , ◦) is not leftmoving. This means that there are
the finite set F = {f1, . . . , fm} ⊂ S and the infinite set A ⊂ S such
that for every finite B = {b1, . . . , bn} ⊂ A the set
S ⊃ {s ∈ S | s ◦ B ⊂ F} is infinite. Notice that for this finite B
the following equality {s ∈ S | s ◦ B ⊂ F} = {s ∈ S | ∀i ∈
n̄ : s ◦ bi ∈ F} =

⋂
i∈n̄{s ∈ S | s ◦ bi ∈ F} =

⋂
i∈n̄{s ∈ S | ∃j ∈

m̄ : s ◦ bi = fj} =
⋂

i∈n̄
⋃

j∈m̄{s ∈ S | s ◦ bi = fj} holds. Now
notice that ∀a ∈ S : Ra is finite to one and therefore
∀i ∈ n̄ : ∀j ∈ m̄ : {s ∈ S : s ◦ bi = fj} is finite and sums and
intersections of finite set is finite. Therefore {s ∈ S | s ◦ B ⊂ F} is
finite, contradiction.

Jump to proof
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Proof that rightcancellative semigroup is leftmoving

Proof.

The semigroup (S , ◦) jest rightcancellative⇔ ∀a, b, s ∈ S : a 6=
b ⇒ Rs(a) = a ◦ s 6= b ◦ s = Rs(b)⇔ ∀s ∈ S : Rs is injection.
Therefore for every s ∈ S preimage of singleton R−1

s ({t}) is at
most singleton and therefore ∀a ∈ S : Ra is finite to one and
therefore (S , ◦) is leftmoving.

Jump to proof
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Proof that rightcancellative semigroup is rightmoving

Proof.

The semigroup (S , ◦) jest rightcancellative⇔ ∀a, b, s ∈ S : a 6=
b ⇒ Rs(a) = a ◦ s 6= b ◦ s = Rs(b)⇔ ∀s ∈ S : Rs is injection. Now
suppose that the semigroup (S , ◦) is not rightmoving. Then we
find the finite {f1, . . . , fm} = F ⊂ S and the infinite A ⊂ S such
that for every finite B ⊂ A the set {s ∈ S | B ◦ s ⊂ F} ⊂ S is
infinite. We show that this set is empty. For this purpose we
choose the arbitrary b1, . . . , b2·m ∈ A that are different. Then due
to rightcancellativity we get that b1 ◦ s, . . . , b2·m ◦ s ∈ S are
different.

Jump to proof
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The rest of the proof that rightcancellative semigroup is
rightmoving

Proof.

If we assume that
{s ∈ S | {b1 ◦ s, . . . , b2·m ◦ s} ⊂ {f1, . . . , fm}} 6= ∅ then we get that
there is such s ∈ S that {b1 ◦ s, . . . , b2·m ◦ s} ⊂ {f1, . . . , fm}. For
this reason we always find such i , j ∈ ¯2·m that bi ◦ s = fk = bj ◦ s,
here k ∈ m̄, and subjecting a rightcancellativity comes to us that
bi = bj . This is contradiction with b1, . . . , b2·m are different.

Jump to proof
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Proof that leftcancellative semigroup is leftmoving

Proof.

The semigroup (S , ◦) jest leftcancellative⇔ ∀a, b, s ∈ S : a 6= b ⇒
Ls(a) = s ◦ a 6= s ◦ b = Ls(b)⇔ ∀s ∈ S : Ls is injection. Now
suppose that the semigroup (S , ◦) is not leftmoving. Then we find
the finite {f1, . . . , fm} = F ⊂ S and the infinite A ⊂ S such that
for every finite B ⊂ A the set {s ∈ S | s ◦ B ⊂ F} ⊂ S is infinite.
We show that this set is empty. For this purpose we choose the
arbitrary b1, . . . , b2·m ∈ A that are different. Then due to
leftcancellativity we get that s ◦ b1, . . . , s ◦ b2·m ∈ S are
different.

Jump to proof
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The rest of the proof that leftcancellative semigroup is
leftmoving

Proof.

If we assume that
{s ∈ S | {s ◦ b1, . . . , s ◦ b2·m} ⊂ {f1, . . . , fm}} 6= ∅ then we get that
there is such s ∈ S that {s ◦ b1, . . . , s ◦ b2·m} ⊂ {f1, . . . , fm}. For
this reason we always find such i , j ∈ ¯2·m that s ◦ bi = fk = s ◦ bj ,
here k ∈ m̄, and subjecting a leftcancellativity comes to us that
bi = bj . This is contradiction with b1, . . . , b2·m are different.

Jump to theorem
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Proof of uniqueness of Cech Stone compactification

Proof.

Assume that we have two different Cech Stone compactifications
(φ,W ) and (ψ,V ). Then for every compact space (Y , τY ) and for
every continuous function f ∈ C (X ,Y ) there is such continuous
function g : V ⊃ ψ(X )→ Y that g ◦ ψ = f and there is such
continuous function h : W ⊃ φ(X )→ Y that h ◦ φ = f . This is
happen for every compact space (Y , τY ) and every continuous
function f : X → Y . Here notice that continuous image of
compact set is compact. Because W is compact and φ is
continuous then if we substitute Y = W , f = φ we get that there
is g : V ⊃ ψ(X )→ φ(X ) ⊂W that fulfills g ◦ ψ = φ.

Jump to theorem
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Proof that (βN ,+) is a semigroup

Proof.

This follows from the obvious fact
∀F ∈ βgN : ∃!n ∈ N : F = e(n). Using this fact we get that
∀A ⊂ N : A ∈ F + G ⇔ ∃!(n,m) ∈ N2 : A ∈ e(n) + e(m)⇔
{n ∈ N | A− n ∈ e(m)} ∈ e(n)⇔ n ∈ {n ∈ N | A− n ∈
e(m)} ⇔ A− n ∈ e(m)⇔ m ∈ A− n⇔ m + n ∈ A⇔ A ∈
e(m + n).

Jump to proof
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The rest of the proof that (βN ,+) is a semigroup

Proof.

We show that ∅ /∈ F + G . Indeed ∅ ∈ F + G ⇔ F 3 {n ∈ N |
∅ − n ∈ G} = {n ∈ N | ∅ ∈ G} = ∅ ⇔ F = 2X ∨ G = 2X a
F ,G ∈ βX . Now we show that
∀A,B ∈ 2N : A ∈ F + G ∧ B ∈ F + G ⇔ A ∩ B ∈ F + G . To
proof this notice that {n ∈ N | A− n ∈ G} ∩ {n ∈ N |
B − n ∈ G} = {n ∈ N | A ∩ B − n ∈ G}. This equility follows
from the equality ∀m ∈ N : A−m ∈ G ∧ B −m ∈ G ⇔ G 3
(A−m) ∩ (B −m) = A ∩ B −m. For every A,B ⊂ N the
following equivalence holds
A ∈ F + G ∧ B ∈ F + G ⇔ F 3 {n ∈ N | A− n ∈ G} ∧ F 3
{n ∈ N | B − n ∈ G} ⇔ F 3 {n ∈ N | A− n ∈ G} ∩ {n ∈ N |
B − n ∈ G} = {n ∈ N | A ∩ B − n ∈ G} ⇔ A ∩ B ∈ F + G .

Jump to proof
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The rest of the proof that (βN ,+) is a semigroup

Proof.

Now we show the ultrafilter property. Here we use the fact
that (N − A)− n = N − (A− n). Notice that ∀A ∈ 2N : A /∈
F + G ⇔ {n ∈ N | A− n ∈ G} /∈ F ⇔ F 3 N − {n ∈ N |
A− n ∈ G} = {n ∈ N | A− n /∈ G} = {n ∈ N | N − (A− n) ∈
G} = {n ∈ N | (N − A)− n ∈ G} ⇔ N − A ∈ F + G .

Jump to proof
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The rest of the proof that (βN ,+) is a semigroup

Proof.

In order to prove associativity
∀F ,G ,H ∈ βN : F + (G + H) = (F + G ) + H at first we show
the equality
{n ∈ N | A−n ∈ H}−m = {n ∈ N | n+m ∈ {n ∈ N | A−n ∈
H}} = {n ∈ N | A−(n+m) ∈ H} = {n ∈ N | A−n−m ∈ H}.
Now we calculate ∀A ⊂ N : A ∈ F + (G + H)⇔ {n ∈ N |
A− n ∈ G + H} ∈ F ⇔ {n ∈ N | {m ∈ N | A− n −m ∈
H} ∈ G} ∈ F ⇔ {n ∈ N | {m ∈ N | A−m ∈ H} − n ∈ G} ∈
F ⇔ {m ∈ N | A−m ∈ H} ∈ F + G ⇔ A ∈ (F + G ) + H.

Jump to proof
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The rest of the proof that (βN ,+) is a semigroup

Proof.

Assume that we have any set from the Stone base H ⊂ βN
that has the form H = A? for A ⊂ X . Then we get that
+−1

G (H) = +−1
G (A?) = {F ∈ βN | F + G ∈ A?} = {F ∈ βN |

A ∈ F + G} = {F ∈ βN | {n ∈ N | A− n ∈ G} ∈ F} = {n ∈
N | A− n ∈ G}? and therefore the preimage of the set from
Stone base is in Stone base.

Jump to theorem
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Proof about idempotent ultrafilters

Proof.

Denote by (R,⊂) the ordered set of all compact semigroups
contained in βN. Then βN ∈ R because (βN,+) is
semigroup contained in βN and βN is compact. This means
that R 6= ∅. Let C ⊂ R is arbitrary chain. Notice that every
element of C is compact semigroup. Then

⋂
C is the

nonempty compact least upper bound of chain C . From Zorn
lemma there is minimal element A ∈ C ⊂ R and this element
A is compact semigroup.

Jump to proof
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The rest of the proof about idempotent ultrafilters

Proof.

Notice that for every F ∈ A the set A + F = {X + F | X ∈ A}
is compact. To see this recall that +F is continuous.
Therefore +F |A : A→ βN; X 7→ +F |A(X ) = X + F is
continuous and +F |A(A) = A + F . As shown A is compact
and therefore A + F is compact as the continuous image of
compact set. Now we show that A + F is semigroup. Define
the operation +̂ : (A + F )2 → A + F ; (X + F ,Y + F ) 7→
(X + F )+̂(Y + F ) = (X + F + Y ) + F where +̂ = +|A+F .
Notice that A + F is closed due to +̂ because A is
subsemigroup of βN and ∀X ,Y ,F ∈ A : X + F + Y ∈ A.
Because + is associative then +̂ is associative as restriction of
associative operation.

Jump to proof
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The rest of the proof about idempotent ultrafilters

Proof.

Now notice that (A,+A) is semigroup. Therefore
∀X ,F ∈ A : X + F = X +A F ∈ A and therefore A + F ⊂ A.
We showed that A is minimal compact semigroup and
A + F ⊂ A is compact semigroup and so it must be that
A + F = A. Now recall that for every F ∈ A the function
+F : A→ A; G 7→ +F (G ) = F + G is continuous and
B = +−1

F ({F}) ⊂ A. Every compact space is Hausdorff and
every continouos function from compact space to Hausdorff
space is proper. This means that preimage of every compact
set is compact. The singleton {F} is compact and therefore
+−1

F ({F}) is compact because +F is continuous and proper.

Jump to proof
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The rest of the proof about idempotent ultrafilters

Proof.

We are going to show that ∀F ∈ A : F = F + F . The set
(B,+) is semigroup because for every H1,H2 ∈ B holds
H1 + F = F ∧ H2 + F = F and therefore
H1 + H2 + F = H1 + (H2 + F ) = H1 + F = F that means
H1 + H2 ∈ B and + is associative. This means that B ⊂ A is
compact semigroup but A is minimal compact semigroup and
therefore B = A. This means that
∃F ∈ βN : F ∈ A⇔ F ∈ B ⇔ F = F + F .

Jump to proof
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The rest of the proof about idempotent ultrafilters

Proof.

Assume that there is such F ∈ βN that F ∈ βgN and
F ∈ βidN. Recall that there is only one such n ∈ N that
F = e(n) and F = F + F and therefore
e(n) = e(n) + e(n) = {A ⊂ N | {m ∈ N | A−m ∈ e(n)} ∈
e(n)} = {A ⊂ N | n ∈ {m ∈ N | n ∈ A−m}} = {A ⊂ N | n ∈
{m ∈ N | n+m ∈ A}} = {A ⊂ N | 2· n = n+n ∈ A} = e(2· n)
but e is injection and therefore n = 2 · n, contradiction with
n ∈ N.

For every F ∈ βN we assume that F = F + F . Then for every
A ⊂ N holds
A ∈ F = F + F ⇔ {n ∈ N | A− n ∈ F} = Â ∈ F .

Jump to proof
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The rest of the proof about idempotent ultrafilters

Proof.

For every F ∈ βid(N) and for every A ⊂ N holds
A ∈ F ⇔ Â ∈ F and therefore for every A ∈ F holds
A ∈ F ∧ Â ∈ F

For every F ∈ βid(N) and for every A ⊂ N we get that
A ∩ Â ∈ F and therefore A ∩ Â 6= ∅.
For every A ∈ F holds A ∩ Â 6= ∅ that means there is such
a ∈ X that a ∈ A ∩ Â⇔ a ∈ A ∧ A− a ∈ F . Therefore
A ∈ F ∧ A− a ∈ F and therefore A ∩ (A− a) ∈ F .

Notice that F ∈ βN id ⊂ βwN and we have the obvious fact
∀F ∈ βwX : ∀a ∈ X : ∀A ∈ F : A− {a} ∈ F . The result is
that A ∩ (A− a)− {a} ∈ F .

Jump to theorem
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Proof of property of G−pair

Proof.

For each n ∈ N we get that
Kn = Kn−1∩(Kn−1−an)−{an} ⊂ Kn−1∩(Kn−1−an) ⊂ Kn−1

and Kn = Kn−1 ∩ (Kn−1 − an)− {an} ⊂
Kn−1 ∩ (Kn−1 − an) ⊂ Kn−1 − an. Hence for every m ∈ Kn

holds an + m ∈ Kn−1, hence an + Kn ⊂ Kn−1.

Jump to theorem
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