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Introduction

e Vne N:n={1,...,n}

o VX:2X = {A € 2X | Ais finite}

o VX:2X ={A € 2X | Ais infinite}

e for any semigroup (S,0) and each a,s,t € S
W ={neN|sot"=a}

e for any semigroup (S,0) and each a,s,t € S
WS ={neN|tos=a}
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Introduction

o BX = {0 # F C 2X | F is ultrafilter} C 22"

o X4 ={FepBX|FoF=F}cC 22* for any semigroup
(X, o)

o 8X = {0 # F C 2X | F is principal ultrafilter} C 2%

o BYX = {0 # F C 2X | F is free ultrafilter} C 22"

0 *: 22X 28X A A= [FecpBX|AcF}cCpX

°oe: X2 ae(a)={Ac2X|ac A} c2X
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Introduction to Hindman theorem

We would like to discuss the proof of Hindman theorem that states
as follows.

For any division of N into finite number of trays we always find
such tray that there is an infinite A C N that is in this tray and all
finite sums of elements of the set A belongs to this tray.

There is written a lot of proofs for this theorem but we are going
to concentrate on the proof that uses the Cech Stone
compactification of N. In fact this is the shortest proof.
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Movability and the Hindman theorem

It turns that the same construction as in Cech Stone
compactification of N works for general infinite semigroups (S, o).
These semigroups have an additional property called movability.
There is proven that for an infinite rightmoving semigroup the
Hindman theorem holds since this is equivalent to the fact that the
Cech Stone remainder 8S — S is subsemigroup of 3S. But what is
happen if this semigroup if leftmoving?
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Moving semigroups

Definition

The infinite semigroup (S, o) is rightmovings VF € 25: VA €
25:3Bc2d: {scS|BosCF}e2

Definition

The infinite semigroup (S, o) is leftmovings VF € 22: VA €
25 :3Bc2d: {scS|soBCF}e2

There are The Eight Immortal Theorems about moving semigroups
that we are introducing here.
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What semigroups are not moving

For each infinite semigroup (S, o) and for each such t,a € S that
Vm,n€ N: m# n=t"#t" and t # a holds:

o ifVse S —{t}: rWi? c2N and
infinite intersection property then
o ifVsec S —{t}: IWH? € 2N and
infinite intersection property then

rWst7a)s€5,{t} has finite
S, 0) is not rightmoving.
IWs?)ses—q4} has finite
S,0) is not leftmoving.

—_ N~ o~
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What semigroups are rightmoving and leftmoving?

e Every infinite semigroup (S, o) such that Va € S: L, is finite
to one is rightmoving.

e Every infinite semigroup (S, o) such that Va € S: R, is finite
to one is leftmoving.

e Every infinite leftcancellative semigroup (S, o) is rightmoving.
o Every infinite rightcancellative semigroup (S, o) is leftmoving.

e Every infinite rightcancellative semigroup (S, o) is
rightmoving.

o Every infinite leftcancellative semigroup (S, o) is leftmoving.

Artur Gizycki The Hindman theorem for semigroups



What is Cech Stone compactification

Definition

For every topological Hausdorff space (X, 7) the compactification
is the pair (¢, C) < C is compactA¢g: X — C is
homeomorphismA@(X) is dense in C.

Among all compactifications the Cech Stone compactification is
the richest and has the highest power.

Definition

For every topological regular space (X, 7x) and its
compactification (¢, Z) the compactification (¢, Z) is Cech
Stone< V(Y Ty ) compact topological

space: Vf € C(X,Y):3g € C(Z D ¢(X),Y): goop=".
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The Cech Stone compactification is unique

For every topological space (X, T) and every two different Cech
Stone compactification of this space (¢, W) and (v, V') there is
such g € C(V D (X)), p(X) C W) that g o) = ¢.

Therefore every Cech Stone compactification of the same space
(X, 7) can be brought to one and for countable space X we can
deal only with Cech Stone compactification that is made with
ultrafilters. Now assume that we know without proofs that (e, SN)
is the Cech Stone compactification of N.
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The semigroup structure

BN becomes a continuous semigroup under the special addition.

+:BN2 522" (F,G)— F+G={ACN|{neN|A-nec
G} e F}.

o +:38N? = BEN;(F,G) = F+G={ACN|{ncN|
A—ne G} eF}

e VF,GefN: F+ G e N

e VF,G,He N: (F+G)+H=F+(G+H)

e VG efN: +¢: BN = BN; F—+c(F)=F+G is
continuous function.
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Idempotent ultrafilters

The focal point of the Cech Stone compactification of any discrete
space X which is used in the proof of Hindman theorem is
idempotence. The following equalities from ultrafilters permit the
use of G—pair in proof of Hindmann theorem.

Theorem
o B(N)#0
o B(N)N BE(N) =0
o VFeBAN: VA2V Ac F& AeF
o VFeBIN:YAec F: AnNAecF
o VF e BIN:YAec F: ANA+£D
o VFc B 9N:VAc F:3ac X: An(A—a)e F
o VFeBIN:VAc F: Jac X: AN(A—a)—{a} €F
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G —pair

Now we define the special tool for proving Hindmann theorem.

Definition

For every F € 54N and every A € F the pair of sequences
(Kn): No — F;n— K, and (an): No — N;n+— a, is G—pair
starting from A if and only if

Asn=0
o K,=
Kn1N(Kn—1—an) —{an} & nenN

o 2 — l&n=0
" min(Kn_lﬂKnA_l)@nEN
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Property of G—pair

Here we express a certain property that solves Hindman theorem.
To prove the Hindman theorem we need only the starting set.

o For every F € BN and every A € F the G—pair (K,,an)
starting from A fulfills¥Nn e N: K, C K,_1 ANap+ K, C K—1.
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Hindman theorem

Here we recall the Hindmann theorem.

For any division of N into finite number of trays we always find
such tray that there is an infinite A C N that is in this tray and all
finite sums of elements of the set A belongs to this tray.

It is enough to indicate the starting set for G—pair. Let A will be
one of trays.
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Proof of Hindman theorem

Proof.

Recall that 3@N # (). Therefore there is such F € BN that

F = F + F. Now we name the starting set for G—pair. Now divide
the set N on a finite number n € N of trays. In this way we get a
finite collection of disjoint sets (A1, ...,Ap). These sets are the
division of set N. Because thereis F > N = J;.; Ai and F is a
prime filter so there is only one such / € n that A; € F. Let

(Kn, an) is G—pair starting from A; € F. For example check that
ai1 + as + a3 is in the same tray as

aii, as, a3, a11 + as, az + ai1, as + az. Notice that a;; € Kip C Ky i
as € K, and therefore a1 + a5 € K4 C K, because a5 + K5 € Ky
and a3 € K> and therefore aj; + a5 + a3 € Ko C Kp that means
ai1 + as + az are in one tray. Our infinite set from the theorem of
Hindmann is {a, | n € N}.

O
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The statement of mixing hypothesis

The mixing hypothesis asks whether it can be so that the following
theorem holds.

For any division of N into finite number of trays we always find
such tray that there is an infinite A C N that is in this tray and all
finite sums of elements of the set A belongs to this tray and
moreover all finite multiplications of elements of the set A belongs
to this tray.
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Mixing hypothesis

In the paper 'Ultrafilters with applications to analysis, social choice
and combinatorics’ of Galvin is written that the following problem
is not solved to this day.

Problem

For every n € N if we divide the set N on n numbered trays from
the set n then there is such number k € n and such numbers
x,y € N that x,y,x + y,x-y are in tray number k.

This is because it was shown in the paper 'Sums equal to products
in BN' of Hindmann that VF € N: F+ F # F- F.
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Mixing hypothesis

Notice that VF € SN: F + F # F-F:BﬂfNﬁﬁ,"dN:(Z). To see
this assume that

JF € BN: FeBYNNBIN < IFeBN: F+F=FAF=F-F.
Therefore 3F € N: F+ F = F- F.
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Mixing hypothesis

We are going to solve mixing hypothesis with false assumption that
there is such F € BN that F € BfN N B@N. The procedure is
very similar to the already shown addition in SN. As in the case of
A-x={yeX|x+yecAliAt={neN|A—neF} we
define Al ={yeX|yxcAland A ={necN|ALcF} As
in the case of

+:8N2 = BN;(F,G)— F+G={ACN|At e G} eF}is
well defined and fulfills all theorems of the above we show that

.1 BN2 = BN; (F,G)— F-G={AC N|A € G} € F} is well
defined and fulfills all mentioned above theorems with small
change + to -.
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Mixing hypothesis

Now we assume that there is such F € SN that

F € dN: = pBidNN BH9N. Notice that for every F € SN holds
VACX:AcF=F+F& A" cFANAcF=FF&ACF.
Therefore for every A € F holds At € F together with A" € F.
Therefore AN A N AT € F and therefore AN A N At £ 0.
Therefore there is such a € X that

acANA—-ac F/\A-% € F AN A € F. Therefore there is such
a€ Xthat(A—a)N(Ai)NAeF and
(A-a)n(Al)ynA—{a} eF.
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Mixing hypothesis

We define G—pair that starts from A as in the case of addition.

. Kn:{A@nzo

KoiN(Kno1—an) N (Kp1- L) —{an & neN

-1 5
1©n=0

@ a, = i ~ 4+ ~A .
mln(K,,_l NKp-1 NKy_1 ) < nelN
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Mixing hypothesis

As in the case of addition we prove that the following theorem
holds.

For every F € 0N and every A € F the G—pair (K, a,) starting
from A fulfills
Vne N: K, C Kh—1Nan+ Ky C K1 A ap- Kp C K1

In this way we have an approach to solve mixing hypothesis.
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Proof of mixing hypothesis

Proof.

We name the starting set for G—pair. Now divide the set N on a
finite number n € N of trays. In this way we get a finite collection
of disjoint sets (A1, ...,A,). These sets are the division of set N.
Because there is F 5 N = Uie,_7 A; and F is a prime filter so there
is only one such i € n that A; € F. Let (K, a,) is G—pair starting
from Ko = A; € F. Notice that a1 € Kig C K4 i a5 € K4 and
because as + Ky C K, we get that a5 + a11 € K4 C Ko = A; and
because as- K5 C Kj we get that as-a11 € Ky C Ko = A;.
Therefore there is such tray A; that

a1, as, a1 + as, ai1- as € A;. ]
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Mixing hypothesis

This fact VF € BN: F + F # F- F is due to complexity of additive
and multiplicative structure of N. But there are a lot of operations
in natural numbers. It might be able to fins such operation (N, o)
that is associative, cancellable and BQ‘_”N N BN # (. Then we
show that a, b,a+ b, ao b are in one tray. Hence we should look
for these two operations (N, o01) and (N, o) such that N is
semigroup and B{;‘f(N) N 6{,‘;(N) # (). Those operations must be
such that Hindmann theorem holds for the semigroups (N, o1) and
(N, 03). Therefore both o3 and o, must be rightmoving.
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Rightmoving semigroups

The problem of Hindmann theorem is solved for semigroups (S, o)
that are rightmoving.

For any rightmoving semigroup (S, o) the Hindmann theorem with
operation o holds.

We dont know what is happen if the semigroup (S, 0) is
leftmoving. There are semigroups that are leftmoving but not
rightmoving and for rightmoving semigroups we have the following
equivalence.

For every semigroup (S, o) we get that (S, o) is rightmovings the
Cech Stone remainder S — S is a subsemigroup of 3S.
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Proof for rightmoving semigroups

Proof.

Choose F = {a} €22 and A= S — {t} € 23.. Then taking any

s € Awe getthat WP ={ne N|sot"=a} 2V and
therefore 25 5 {t" [ne WS} ={t" € S|sot" =a} Cc {u e
S|sou=a} €2° and therefore {u € S|sou=a} €23 . Now
we show that for any finite B C Aholds {u€ S| Bou C F} €23,
that contradicts rightmovability. Taking any n € N and any
Si,...,Sp € A that are different and denoting B = {s1,...,s,} we
get that Vi € ii: rWe? € 2N From the above argument we get
that

Vien:2s s5{t"|neWi®}c{ueS|sou=a}CS. O
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The rest of the proof for rightmoving semigroups

Proof.

Now we intersect over i € fi these sets {t" | n € (;c; rWe?} =
Nica{t" | n e Wgt CNjcr{u€S|siou=a}={ueS|Vie
n:ssou=ay={ueS|ssou=an...Aspou=a}={uecS|
{s1,...,snfou=a}={se€S|BosC F} CS. Just assuming
that (), {t" | n € rWs?} € 25, we conclude that
{s€S|BoscC F}c23. The assumption that the
(rWst’a)ses_{t} has finite infinite intersection property is

sufficient. O
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Proof for leftmoving semigroups

Proof.

Choose F = {a} €22 and A=S — {t} € 22.. Then taking any
s € Awegetthat WS? ={ne N|t"os=a} e2N and
therefore 25 5 {t" |n€ WS} = {t" € S |t"os=a} C {u €
S|uos=a} €2° and therefore {u € S| uos=a} €23 . Now
we show that for any finite B C A holds {u € S|uoB C F} €23,
that contradicts leftmovability. Taking any n € N and any
Si,...,Sn € A that are different and denoting B = {s1,...,sp} we
get that Vi € n: /WSt,.’a € 2N From the above argument we get
that Vie n: 25 > {t"|ne IWi?} c{ue S|uos;=a} CS.

L]
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The rest of the proof for leftmoving semigroups

Proof.

Now we intersect over i € i these sets {t" | n € ;5 IWs"} =
Nicalt" | n € IWg™ C Nics{lu€ S|uosi=a}={ueS|Vie
niuosi=ay={ueS|uosy=aAN...Nuos,=a} ={uecS|
uo{si,...,spy=a}={se€S|soBCF} CS. Just assuming
that ();c;{t" | n € W5} € 25, we conclude that
{s€S|soBC F}c23. The assumption that the
(let’a)ses_{t} has finite infinite intersection property is sufficient.
[]
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Proof of rightmovability if L, is finite to one

Proof.

The sentence Va € S: L, is finite to one means that

Va,t € S: L7Y({t}) ={s € S| Ls(s) = aos =t} is finite. Now
assume that (S, o) is not rightmoving. This means that there are
the finite set F = {f;,...,fn} C S and the infinite set A C S such
that for every finite B = {b1,...,b,} C A the set

SO {se S| BosC F} is infinite. Notice that for this finite B
the following equality {s€ S|BosC F} ={se S |Vie

n:bjose€ F} =\ica{s€S|biose F} =\ica{s€S|3j €
m: bjos=fi} =Nics Ujemis € S| bios=f;} holds. Now
notice that Va € S: L, is finite to one and therefore
Vien:Vjem:{se€S: bjos=f}is finite and sums and
intersections of finite set is finite. Therefore {s€ S| BosC F}is
finite, contradiction.

Ol
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Proof that leftcancellative semigroup is rightmoving

Proof.

The semigroup (S, o) jest leftcancellatives Va,b,s € S: a# b =
Ls(a) =soa#sob=Lsb) < Vs € S: L is injection. Therefore
for every s € S preimage of singleton LS 1({t}) is at most singleton
and therefore Va € S: L, is finite to one and therefore (S, 0) is
rightmoving.
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Proof of leftmovability if R, is finite to one

Proof.

The sentence Va € S: R, is finite to one means that

Va,t € S: R;71({t}) = {s € S| Rs(s) = soa =t} is finite. Now
assume that (S, o) is not leftmoving. This means that there are
the finite set F = {f;,...,fn} C S and the infinite set A C S such
that for every finite B = {b1,...,b,} C A the set

SO {se S |soBC F} is infinite. Notice that for this finite B
the following equality {s€ S|soBC F} ={se S |Vie

n:sob € F} =ica{ls€S|sobi€e F} =\icals€S|3Jje
m:sob;=fi} =Nics Ujemis € S| sobi = f;} holds. Now
notice that Va € S: R, is finite to one and therefore
Vien:Vjem:{seS:sob;=f} is finite and sums and
intersections of finite set is finite. Therefore {s€ S|soB C F}is
finite, contradiction.

Ol
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Proof that rightcancellative semigroup is leftmoving

Proof.

The semigroup (S, o) jest rightcancellative< Va, b,s € S: a #
b= Rs(a) =aos#bos=Rs(b) < Vs eS: Rsis injection.
Therefore for every s € S preimage of singleton R;1({t}) is at
most singleton and therefore Va € S: R, is finite to one and
therefore (S, o) is leftmoving.
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Proof that rightcancellative semigroup is rightmoving

Proof.

The semigroup (S, o) jest rightcancellative< Va, b,s € S: a #
b= Rs(a) =aos # bos = Rs(b) < Vs € S: R;s is injection. Now
suppose that the semigroup (S, o) is not rightmoving. Then we
find the finite {f1,...,fn} = F C S and the infinite A C S such
that for every finite B C Atheset {s€ S|BosC F}CSis
infinite. We show that this set is empty. For this purpose we
choose the arbitrary by, ..., bo., € A that are different. Then due
to rightcancellativity we get that by os,...,bo.,0s € S are
different. []
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The rest of the proof that rightcancellative semigroup is
rightmoving

Proof.

If we assume that

{seS|{bios,...,bomos} C{f,...,fm}} # 0 then we get that
there is such s € S that {byos,...,bp.mos} C {f,...,fm}. For
this reason we always find such i, j € 2-m that bjos = fy = bj o',
here k € m, and subjecting a rightcancellativity comes to us that
b; = b;. This is contradiction with by, ..., b>., are different. O
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Proof that leftcancellative semigroup is leftmoving

Proof.

The semigroup (S, o) jest leftcancellatives Va,b,s € S: a# b =
Ls(a) =soa#sob=Lsb) < VseS: L is injection. Now
suppose that the semigroup (S, o) is not leftmoving. Then we find
the finite {f1,...,fm} = F C S and the infinite A C S such that
for every finite B C Atheset {s€ S|so B C F} C S is infinite.
We show that this set is empty. For this purpose we choose the

arbitrary by,..., bo.,, € A that are different. Then due to
leftcancellativity we get that so by,...,s0 by, €S are
different. ]
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The rest of the proof that leftcancellative semigroup is
leftmoving

Proof.

If we assume that

{seS|{soby,...,s0bpm} C{A,...,fm}} # 0 then we get that
there is such s € S that {so by,...,sobym} C {f,...,m}. For
this reason we always find such i,j € 2-m that so b; = f, = so b;,
here k € m, and subjecting a leftcancellativity comes to us that

b; = b;. This is contradiction with by, ..., b>., are different. O
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Proof of uniqueness of Cech Stone compactification

Proof.

Assume that we have two different Cech Stone compactifications
(¢, W) and (¢, V). Then for every compact space (Y, 7y) and for
every continuous function f € C(X,Y) there is such continuous
function g: V D ¢)(X) — Y that g o) = f and there is such
continuous function h: W D ¢(X) — Y that ho ¢ = f. This is
happen for every compact space (Y, Ty) and every continuous
function f: X — Y. Here notice that continuous image of
compact set is compact. Because W is compact and ¢ is
continuous then if we substitute Y = W, f = ¢ we get that there
is g: VD Y(X) = ¢(X) C W that fulfills g o) = ¢. Ol
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Proof that (8N, +) is a semigroup

@ This follows from the obvious fact
VF € B8N: J'n € N: F = e(n). Using this fact we get that
VACN:AEF+ G« 3l(n,m)e N2: Ac e(n)+e(m) <
{neN|A-nece(m)}ce(nenc{neN|A-—nec
e(m}eA—nce(memeA—nsm+neAs Ac
e(m+ n).
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The rest of the proof that (6N, +) is a semigroup

@ We show that ) ¢ F+ G. Indeed ) € F+ G < F>{ne N |
D—neGl={neN|0eG}=0F=2XvG=2Xa
F,G € BX. Now we show that
VA Be2N: Ac F+GABeF+G<ANBeF+G. To
proof this notice that {(ne N|A—ne G}Nn{ne N |
B—ne G}={ne N|ANB—n¢c G}. This equility follows
from the equality Y me N: A—me GAB—-me G& G >
(A—m)N(B—m)=ANB—m. Forevery A,B C N the
following equivalence holds
AcF+GABeF+GeFa3{neN|A-—neG}AF>
{neN|B-neGtsF>3{neN|A-—neGin{neN|
B-neGt={neN|ANB—-ne G} < ANBeF+G.

Ol
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The rest of the proof that (6N, +) is a semigroup

@ Now we show the ultrafilter property. Here we use the fact
that (N — A) — n= N — (A — n). Notice that YA € 2N: A ¢
F+Ge{neN|A-neG}l¢FesF>5N—-{neN|
A-neGt={neN|A-n¢ G}={neN|N—-(A-n)e
Gt={neN|(N-A) —-neGleN-AcF+G.

Ol

4
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The rest of the proof that (6N, +) is a semigroup

@ In order to prove associativity
VF,G,He€ BN: F+(G+ H)=(F+ G)+ H at first we show
the equality
{neN|A-—neH}—m={neN|ntme{neN|A-nec
H}}={neN|A—(n+m)e H} ={ne N|A—n—m e H}.
Now we calculate VAC N: Ac F+(G+H)< {ne N|
A-neG+HeFs{neN|{meN|A-n—me
H}eGteFe{neN|{meN|A-—meH}—neG}e
Fe{meN|A-meHeF+G< Ae(F+G)+H.

O
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The rest of the proof that (6N, +) is a semigroup

@ Assume that we have any set from the Stone base H C SN
that has the form H = A* for A C X. Then we get that
+cM(H) =+ (A)={FEBN|F+ G e A} = {F € BN |
AcF+G}={FepBN|{neN|A-neG}eF}={ne
N | A—ne G}* and therefore the preimage of the set from
Stone base is in Stone base.

Ol

o’
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Proof about idempotent ultrafilters

@ Denote by (R, C) the ordered set of all compact semigroups
contained in SN. Then SN € R because (8N, +) is
semigroup contained in SN and SN is compact. This means
that R # (). Let C C R is arbitrary chain. Notice that every
element of C is compact semigroup. Then () C is the
nonempty compact least upper bound of chain C. From Zorn
lemma there is minimal element A € C C R and this element
A is compact semigroup.

Ol
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The rest of the proof about idempotent ultrafilters

o Notice that for every F € Atheset A+ F ={X+F | X € A}
is compact. To see this recall that 4f is continuous.
Therefore +£|a: A — BN; X — +£|a(X) =X+ F is
continuous and +£|a(A) = A+ F. As shown A is compact
and therefore A 4 F is compact as the continuous image of
compact set. Now we show that A + F is semigroup. Define
the operation +: (A+ F)2 5 A+ F;(X+F,Y + F) —
(X+F)HY+F)=(X+F+Y)+F where + = +|a;r.
Notice that A4 F is closed due to + because A is
subsemigroup of BN and VX, Y, Fe A: X+ F+Y € A
Because + is associative then F is associative as restriction of
associative operation.
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The rest of the proof about idempotent ultrafilters

@ Now notice that (A, +4) is semigroup. Therefore
VX,FeEA: X+ F=X+4F € A and therefore A+ F C A.
We showed that A is minimal compact semigroup and
A+ F C Ais compact semigroup and so it must be that
A+ F = A. Now recall that for every F € A the function
+r: A= A, G — +£(G) = F + G is continuous and
B = +;1({F}) C A. Every compact space is Hausdorff and
every continouos function from compact space to Hausdorff
space is proper. This means that preimage of every compact
set is compact. The singleton {F} is compact and therefore
+71({F}) is compact because +F is continuous and proper.
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The rest of the proof about idempotent ultrafilters

@ We are going to show that VF € A: F = F + F. The set
(B, +) is semigroup because for every Hi, Hy € B holds
Hi +F = F A Hy + F = F and therefore
Hi+ Hy+ F = Hy + (H2 + F) = H; + F = F that means
Hy + H> € B and + is associative. This means that B C A is
compact semigroup but A is minimal compact semigroup and
therefore B = A. This means that
JFepN: FeAsFeBs F=F+F.
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The rest of the proof about idempotent ultrafilters

@ Assume that there is such F € BN that F € 8N and
F € 5@N. Recall that there is only one such n € N that
F =e(n) and F = F + F and therefore
e(n)=e(n)+e(n)={ACN|{meN|A-mece(n)} e
e(mM}={AcN|ne{meN|neA-—m}} ={ACN|ne
{meN|ntmeA} ={ACN|2-n=n+nec A} =e(2-n)
but e is injection and therefore n = 2 - n, contradiction with
neN.

e For every F € BN we assume that F = F + F. Then for every

A C N holds
AcF=F+F<{neN|A-neF}=AcF.
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The rest of the proof about idempotent ultrafilters

o For every F € $"9(N) and for every A C N holds
AeF <:>AA € F and therefore for every A € F holds
AcFANAEF

o For every F € B'@(N) and for every A C N we get that
ANA € F and therefore AN A # ().

e For every A€ F holds AN A # () that means there is such
a€Xthatac ANAs ac ANA—ac F. Therefore
A€ FAA—ac F and therefore AN (A—a) € F.

o Notice that F € BN@ c BN and we have the obvious fact
VFep¥X:Vae X: VA€ F: A—{a} € F. The result is
that AN (A—a)—{a} € F.
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Proof of property of G—pair

@ For each n € N we get that
Kn = Kn-1N (Kn—l - an) - {an} C Kh—1n (Kn—l - an) C Kn-1
and K, = Kp—1 N (Kh—1 — an) — {an} C
Kn—1 N (Kn—1 — an) C Kh—1 — a,. Hence for every m € K,
holds a, + m € K,_1, hence a, + K, C K,_1.
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